General physics IV WM-FI-261
Course program (30 hours of lectures and 30 hours of tutorials):
1. The corpuscular-wave nature of electromagnetic radiation. Photoelectric phenomenon. Photochemical phenomenon. Compton phenomenon. Lebedev's experience.
2. The de Broglie hypothesis. Phase and group velocity of de Broglie waves. Schrödingera-Kleina-Gordona wave equation.
3. Experimental confirmation of the de Broglie hypothesis. Examples of experiments confirming the wave-particle nature of elementary particles, atoms and molecules.
4. Electron in a finite potential well. Two- and three-dimensional electron traps. Electron wave function. Other electron traps: nanocrystals, quantum dots, quantum pens. Electron detection probability density.
5. Step potential for electron energy higher / lower than threshold height. Potential in the form of a barrier.
6. Models of atoms: Thomson, Rutherford, Bohr (Bohr's postulates), contemporary Bohr-Sommerfeld. The hydrogen atom: energy levels, series in the emission spectrum, quantum numbers.
7. Basic properties of atoms. Franck-Hertz experiment - confirmation of discrete stationary states postulated in the Bohr model. Einstein-de Hass experiment and Barnett's experiment - coupling angular momentum and magnetic moment of individual atoms. Stern-Gerlach experiment - electron spin.
8. Atoms in a magnetic field - Zeeman effect: anomalous, normal. Paschen-Back effect. Atom in an electric field - Stark effect.
9. Construction of the periodic table. X-rays and element numbering - the Mosley experiment. Paulie's prohibition. Hund's rules.
10. Band theory of solids. Electrical properties of solids: insulators, semiconductors (donor and acceptor levels), metals, superconductors. Semiconductor diode. Transistor.
11. Lasers and laser light. Spontaneous and forced emission, inversion of fillings. Helium-neon laser.
12. Raman scattering - a method of detecting the oscillatory-rotational structure of molecules.
13. Properties of atomic nuclei. The path of nuclide stability, radioactive decay. Radioactive series. The law of radioactive decay. The fission and synthesis of atomic nuclei.
14. Drop model of the atomic nucleus. Bethe-Weizsäcker formula, conclusions resulting from it. The shell model of the atomic nucleus. Magic numbers.
15. Elementary particles and their classification. Quark model of elementary particles. Multiplets with specific spin and parity. Quarks, gluons, color concept.
Description prepared by: Paweł Pęczkowski
Term 2024/25_L:
The fourth part of General Physics on the atomic structure of matter |
(in Polish) Dyscyplina naukowa, do której odnoszą się efekty uczenia się
(in Polish) E-Learning
Term 2022/23_L: (in Polish) E-Learning (pełny kurs) z podziałem na grupy | Term 2020/21_L: (in Polish) E-Learning (pełny kurs) z podziałem na grupy | Term 2024/25_L: (in Polish) E-Learning | Term 2021/22_L: (in Polish) E-Learning (pełny kurs) z podziałem na grupy | Term 2023/24_L: (in Polish) E-Learning | Term 2019/20_L: (in Polish) E-Learning (pełny kurs) |
(in Polish) Grupa przedmiotów ogólnouczenianych
(in Polish) Opis nakładu pracy studenta w ECTS
Term 2021/22_L: Lectures - 2 points ECTS
Exercises - 2 points ECTS | Term 2022/23_L: Lectures - 2 points ECTS
Exercises - 2 points ECTS | Term 2023/24_L: Lectures - 2 points ECTS
Exercises - 2 points ECTS
ECTS description:
For the lecture:
participation in classes: 30h
preparation for classes: 10h
preparation for verification: 15 hours
consultations with the lecturer: 5h
Total 60 hours, 2 ECTS
For exercise:
participation in classes: 30h
preparation for classes: 10h
preparation for verification: 15 hours
consultations with the lecturer: 5h
Total 60 hours, 2 ECTS |
Subject level
Learning outcome code/codes
Type of subject
Preliminary Requirements
Course coordinators
Term 2022/23_L: | Term 2020/21_L: | Term 2024/25_L: | Term 2021/22_L: | Term 2023/24_L: | Term 2019/20_L: |
Learning outcomes
a) Knows the basic concepts of atomic and nuclear physics and the elements of solid state physics.
b) Understands the essence and specificity of atomic and nuclear physics and the basics of solid state physics.
c) Knows what the processes taking place in atoms, atomic nuclei and a solid are based on.
Assessment criteria
- Written 2 x test in the during of the semester
- Final written and oral examination
- As part of the exercises in the subject of Physics IV, the student is required to perform 10 projects - tasks included in the worksheets.
Practical placement
There are no apprenticeships
Bibliography
[1] Robert Eisberg, Robert Resnick, Fizyka kwantowa, atomów, cząsteczek, ciała stałego, jąder i cząstek elementarnych, PWN, Warszawa, 1983.
[2] Jerzy Ginter." Fizyka fal. Fale w ośrodkach jednowymiarowych. Fale w ośrodkach niejednorodnych", t.1, PWN, Warszawa, 1993.
[3] Jerzy Ginter." Fizyka fal. Promieniowanie i dyfrakcja. Stany związane", t.2, PWN, Warszawa, 1993.
[4] Hermann Haken, Hans C. Wolf, "Fizyka molekularna z elementami chemii kwantowej", PWN, Warszawa, 1998.
[5] Hermann Haken, Hans C. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, PWN, Warszawa, 2002.
[6] David Halliday, Robert Resnick, Jearl Walker, "Podstawy fizyki", t.5, PWN, Warszawa, 2007.
[7] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące korpuskularno-falową naturę materii", t.1, Oficyna Wydawnicza ŁOŚGraf, Warszawa, 2011.
[8] Paweł Pęczkowski, "Tajemnicza mechanika kwantowa. Doświadczenia ukazujące kwantowe własności atomów i cząstek elementarnych", t.2, ICMB, Warszawa, 2015.
[9] Zofia Leś, Podstawy fizyki atomu, PWN, Warszawa, 2021.
Supplementary literature (original papers):
- L. de Broglie, "Wave and quanta", Nature (London) 112, 540, 1923.
- C.J. Davisson, L.H. Germer, "The scattering of electrons by a single crystal of nickel", Nature (London) 119, 558, 1927.
- C. Jönsson, "Electron diffraction at multiple slits", Am. J. Phys. 41(1), 4, 1974.
- A. Zeilinger, et al., "Single and double-slit diffraction of neutrons", Rev. Mode. Phys. 60, 4, 1988.
- O. Cornal, J. Mlynek, "Young's double-slit experiment with atoms: a simple atom interferometer", Phys. Rev. Lett. 66, 2689, 1991.
- O. Nairz, M. Arndt, A. Zellinger, "Quantum interference experiments with large molecules", Am. J. Phys. 71(4), 319, 2003.
- L. Hackermüller, K. Hornberger, et al., "The wave nature of biomolecules and fluorofullerenes", Phys. Rev. Lett. 91, 090408, 2003.
- N. Bohr, "On the constitution of atoms and molecules", Phil. Mag. 26, 1, 1913.
- J. Franck, G. Hertz, "Über Zusammenstösse zwischen Elektronen und den Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselbe"n, Verh. DPG 16, 457, 1914.
- W. Gerlach, O. Stern, "Der experimentelle Nachweis des magnetischen Moments des Silberatoms", Z. Phys. 8, 110, 1922.
- W. Gerlach, O. Stern, "Der experimentelle Nachweis der Richtungsquantlung in Magnetfield", Z. Phys. 9, 349, 1922.
- A. Einstein, W.J. de Haas, "Experimenteller Nachweis der Ampèreschen Molekulaströme", Deut. Phys. Gesell. 17, 152, 1915.
- D.J. Barnett, "The magnetization of iron, nickel, and cobalt by rotation and the nature of the magnetic molecule", Phys. Rev. 10, 7, 1917.
- P. Zeeman, "On the influence of magnetism on the nature of the light emitted by substance", Phil. Mag. 43, 226, 1897.
Additional information
Information on level of this course, year of study and semester when the course unit is delivered, types and amount of class hours - can be found in course structure diagrams of apropriate study programmes. This course is related to the following study programmes:
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: