Biostatistics with R - basic course WMCM-LE-BwR-fak
The course consists of 10 sessions. Before each session, participants will be provided with a script containing all the commands and code snippets needed during the class. The aim of the course is to familiarize students with selected packages from the tidyverse collection for data processing and creating plots. The classes will also provide an opportunity to review (or learn) basic statistical concepts. The course will be completed by undertaking a mini-project using the methods discussed during the sessions. All materials provided will be in English.
Course outline:
1. Introduction to R
o Creating scripts and using the console
o Basic calculations
o Installing packages and loading libraries
o Reading and importing data
2. Introduction to dplyr
o Filter(), select(), mutate() functions
o Pipe %>% operator
3. Descriptive Statistics
o Types of variables
o Common plots for visualizing single variables
o Measures of central tendency: mean, median
o Measures of dispersion: standard deviation, variance
o Intuition behind the normal distribution
4. Introduction to ggplot2
o Understanding ggplot syntax
o Creating example graphs
5. Introduction to R Markdown
o Generating interactive .html reports
6. Introduction to Statistical Inference
o Concept of hypothesis testing
o Statistical significance and p-values
o Confidence intervals
7. Analysis of Quantitative Data I
o Parametric vs. nonparametric tests
o t-test for dependent and independent samples
o Mann-Whitney U test for dependent and independent samples
Dyscyplina naukowa, do której odnoszą się efekty uczenia się
Grupa przedmiotów ogólnouczenianych
Poziom przedmiotu
Symbol/Symbole kierunkowe efektów uczenia się
Typ przedmiotu
Wymagania wstępne
Koordynatorzy przedmiotu
Efekty kształcenia
Learning Outcomes
Upon completing the "Biostatistics with R – Basic Course," participants will:
o Understand the fundamentals of R, including scripting, console use, package management, and data import.
o Be able to manipulate and analyze biomedical data using dplyr and visualize results with ggplot2.
o Compute and interpret basic descriptive statistics, including measures of central tendency and dispersion.
o Grasp key statistical concepts such as normal distribution, hypothesis testing, p-values, and confidence intervals.
o Apply statistical tests for quantitative data, including the t-test and Mann-Whitney U test.
o Create interactive reports in R Markdown to present analytical results effectively.
This course provides a strong foundation for further study in "Advanced Biostatistics with R."
Kryteria oceniania
To receive a grade of 5 for the course, students must actively participate in classes, complete homework assignments, and successfully pass the final mini-project. If these conditions are not met, the final grade will be discussed on an individual basis.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: